Lévy Flights in a Steep Potential Well

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow Lévy flights.

Among Markovian processes, the hallmark of Lévy flights is superdiffusion, or faster-than-Brownian dynamics. Here we show that Lévy laws, as well as Gaussian distributions, can also be the limit distributions of processes with long-range memory that exhibit very slow diffusion, logarithmic in time. These processes are path dependent and anomalous motion emerges from frequent relocations to alre...

متن کامل

Lévy flights in random environments.

We consider Lévy flights characterized by the step index f in a quenched random force field. By means of a dynamic renormalization group analysis we find that the dynamic exponent z for f < 2 locks onto f , independent of dimension and independent of the presence of weak quenched disorder. The critical dimension, however, depends on the step index f for f < 2 and is given by dc = 2f − 2. For d ...

متن کامل

Lévy flights in inhomogeneous media.

We investigate the impact of external periodic potentials on superdiffusive random walks known as Lévy flights and show that even strongly superdiffusive transport is substantially affected by the external field. Unlike ordinary random walks, Lévy flights are surprisingly sensitive to the shape of the potential while their asymptotic behavior ceases to depend on the Lévy index mu. Our analysis ...

متن کامل

Lévy flights in evolutionary ecology.

We are interested in modeling Darwinian evolution resulting from the interplay of phenotypic variation and natural selection through ecological interactions. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by each individual's trait values, and interactions between indiv...

متن کامل

Lévy flights from a continuous-time process.

Lévy flight dynamics can stem from simple random walks in a system whose operational time (number of steps n) typically grows superlinearly with physical time t. Thus this process is a kind of continuous-time random walk (CTRW), dual to the typical Scher-Montroll model, in which n grows sublinearly with t. Models in which Lévy flights emerge due to a temporal subordination allow one easily to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2004

ISSN: 0022-4715

DOI: 10.1023/b:joss.0000028067.63365.04